References – Genes

APOE

  • Dale E. Bredesen. Reversal of cognitive decline in Alzheimer’s disease. AGING, June 2106, Vol 8 No 6.
  • Nicolls MR. The clinical and biological relationship between type II diabetes mellitus and Alzheimer’s disease. Curr Alzheimer Res 2004;1:47–54.
  • Nicholson C. Neurodegenerative disease: high fat lightens the load. Neuroscience 2008;9:584–5

CYP7A1

  • Abdullah, M. M., Cyr, A., Lépine, M.-C., Eck, P. K., Couture, P., Lamarche, B., & Jones, P. J. (2016). Common Variants in Cholesterol Synthesis– and Transport–Related Genes Associate with Circulating Cholesterol Responses to Intakes of Conventional Dairy Products in Healthy Individuals. The Journal of Nutrition, 146(5), 1008–1016. http://doi.org/10.3945/jn.115.222208
  • De Castro-Orós, I., Pampín, S., Cofán, M., Mozas, P., Pintó, X., Salas-Salvadó, J., … Pocoví, M. (2011). Promoter variant −204A > C of the cholesterol 7α-hydroxylase gene: Association with response to plant sterols in humans and increased transcriptional activity in transfected HepG2 cells. Clinical Nutrition, 30(2), 239–246. http://doi.org/10.1016/j.clnu.2010.07.020
  • Jenkins, D. J. A., Kendall, C. W. C., Faulkner, D., Vidgen, E., Trautwein, E. A., Parker, T. L., … Connelly, P. W. (2002). A dietary portfolio approach to cholesterol reduction: combined effects of plant sterols, vegetable proteins, and viscous fibers in hypercholesterolemia. Metabolism: Clinical and Experimental, 51(12), 1596–604. http://doi.org/10.1053/meta.2002.35578
  • Juzyszyn, Z., Kurzawski, M., Lener, A., Modrzejewski, A., Pawlik, A., & Droździk, M. (2008). Cholesterol 7α-Hydrolase ( CYP7A1 ) c.−278A>C Promoter Polymorphism in Gallstone Disease Patients. Genetic Testing, 12(1), 97–100. http://doi.org/10.1089/gte.2007.0067
  • MacKay, D. S., Eck, P. K., Gebauer, S. K., Baer, D. J., & Jones, P. J. (2015). CYP7A1-rs3808607 and APOE isoform associate with LDL cholesterol lowering after plant sterol consumption in a randomized clinical trial. The American Journal of Clinical Nutrition, 102(4), 951–957. http://doi.org/10.3945/ajcn.115.109231
  • Rideout, T. C., Harding, S. V, & Mackay, D. S. (2012). Metabolic and genetic factors modulating subject specific LDL-C responses to plant sterol therapy. Canadian Journal of Physiology and Pharmacology, 90(5), 509–14. http://doi.org/10.1139/y2012-060
  • Russell, D. W. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annual Review of Biochemistry, 72(1), 137–74. http://doi.org/10.1146/annurev.biochem.72.121801.161712
  • She, Y., MacKay, D. S., House, J. D., & Jones, P. J. (2018). CYP7A1-rs3808607: a single nucleotide polymorphism associated with cholesterol response to functional foods. Current Opinion in Food Science, 20, 19–23. http://doi.org/10.1016/j.cofs.2018.02.013

FADS

  • Schaeffer, L. et al., (2006). Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Human Molecular Genetics, 15(11), 1745–56
  • Bokor, S., et al., (2010) Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. Journal of Lipid Research, 51(8), 2325–33.
  • Vessby B et al,. Desaturation and elongation of Fatty acids and insulin action. Ann N Y Acad Sci. (2002) 967:189-95.
  • Cormier, H., et al., (2014) Effects of FADS and ELOVL polymorphisms on indexes of desaturase and elongase activities: results from a pre-post fish oil supplementation. Genes & Nutrition, 9(6), 437
  • Tosi F, et al., (2014) Delta-5 and delta-6 desaturases: crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv Exp Med Biol. 824:61-81

Fat Mass and Obesity (FTO)

  • Woehning A et al., The A-allele of the common FTO gene variant rs9939609 complicates weight maintenance in severe obese patients, International Journal of Obesity, 2013, 37, 135-39
  • E Grimm et al., Genetics of eating behaviour. Established and emerging concepts, Nutrition Reviews, Jan 2011, 69: 52-60
  • Tao Huang et al., FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial, Am Journal of clinical nutrition, 2014, 99, 4
  • Loos, R et al., “The Bigger Picture of FTO – the First GWAS-Identified Obesity Gene.” Nature reviews. Endocrinology (2014) 10: 51–61.
  • Wang, Kai et al. “A Genome-Wide Association Study on Obesity and Obesity-Related Traits.” Ed. Zhongming Zhao. PLoS ONE 6.4 (2011): e18939.

Glutathione S-Transferase (GST)

  • Ankathil R. Tobacco, Genetic susceptibility and lung cancer, Human genomic center, Malaysia, La-press.com, 2010
  • Block, G. et al. “Serum Vitamin C And Other Biomarkers Differ By Genotype Of Phase 2 Enzyme Genes GSTM1 And GSTT1”. American Journal of Clinical Nutrition 94.3 (2011): 929-937.
  • Cahill, L. E, B. Fontaine-Bisson, and A. El-Sohemy. “Functional Genetic Variants Of Glutathione S-Transferase Protect Against Serum Ascorbic Acid Deficiency”. American Journal of Clinical Nutrition 90.5 (2009): 1411-1417.
  • Horska, Alexandra et al. “Vitamin C Levels In Blood Are Influenced By Polymorphisms In Glutathione S-Transferases”. European Journal of Nutrition 50.6 (2010): 437-446. Web.
  • International Agency for Research on Cancer. Cruciferous Vegetables, Isothiocyanates And Indoles. Lyon: IARC Press, 2004.
  • Ren, C., Park, S. K., Vokonas, P. S., Sparrow, D., Wilker, E., Baccarelli, A., … Schwartz, J. (2010). Air pollution and homocysteine: more evidence that oxidative stress-related genes modify effects of particulate air pollution. Epidemiology (Cambridge, Mass.), 21(2), 198–206.
  • Tripathi, D. N., & Jena, G. B. (2010). Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: role of Nrf2, p53, p38 and phase-II enzymes. Mutation Research, 696(1), 69–80.
  • Su, Z.-Y., Shu, L., Khor, T. O., Lee, J. H., Fuentes, F., & Kong, A.-N. T. (2013). A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Topics in Current Chemistry, 329, 133–62.
  • Yuan, Lin-Hong et al. “The Role Of Glutathione S-Transferase M1 And T1 Gene Polymorphisms And Fruit And Vegetable Consumption In Antioxidant Parameters In Healthy Subjects”. British Journal of Nutrition 107.06 (2011): 928-933.
  • Michnovicz et al. Changes in levels of urinary oestrogen metabolites after oral indole-3- carbinol treatment in humans. J Natl Cancer Inst. 1997; 89 (10): 718-23.

Human leukocyte antigens (HLAs)

  • Björck S, Brundin C, Lörinc E, Lynch KF, Agardh D. 2010 Screening detects a high proportion of celiac disease in young HLA-genotyped children. J Pediatr Gastroenterol Nutr, 50, pp49-53.
  • Monsuur et al., 2008 Effective detection of human leukocyte antigen risk allele in celiac disease using tag single nucleotide polymorphisms. PLoSone, 5 e2270
  • Newnham, E.D., 2017. Coeliac disease in the 21st century: paradigm shifts in the modern age. Journal of Gastroenterology and Hepatology, 32, pp.82–85. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28244672 [Accessed May 2, 2017].
  • Singh, P. et al., 2015. Risk of Celiac Disease in the First- and Second-Degree Relatives of Patients With Celiac Disease: A Systematic Review and Meta-Analysis. The American Journal of Gastroenterology, 110(11), pp.1539–1548. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26416192 [Accessed May 2, 2017].
  • Sollid, L.M., 2002. Coeliac disease: dissecting a complex inflammatory disorder. Nature reviews. Immunology, 2(9), pp.647–55. Available at: http://www.nature.com/doifinder/10.1038/nri885 [Accessed May 2, 2017].
  • Withoff, S. et al., 2016. Understanding Celiac Disease by Genomics. Trends in Genetics, 32(5), pp.295–308. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26972670 [Accessed May 2, 2017].

IL-6 Receptor (IL6R)

  • Scheller J et al., The pro-and-anti-inflammatory properties of the cytokine interleukin-6. Biochim et Biophys Acta – Mol Cell Res. (2011) 1813:5 878-888
  • Ferreira R et al., Functional IL6R 358Ala allele impairs classical IL-6 receptor signalling and influences risk of diverse inflammatory diseases. PLOS Genetics (2013) 9:e1003444
  • Ridker P. C-reactive protein, inflammation ans cardiovascular disease. Tex Heart Inst J (2005) 32:384-386
  • De Jong A et.al., Metabolic effects of plant sterols and stanols (Review) J Nut Biochem (2003) 14:362-369
  • Petersen A M et al., The anti-inflammatory effect of exercise, Journal of Applied Physiology, 2005 April, 98: 1154-62 – exercise may reduce inflammation
  • Phillips CM et al., Additive effect of polymorphisms in the IL-6, LTA, and TNF-(alpha) genes and plasma fatty acid level modulate risk for the metabolic syndrome and its components. J Clin Endocrinol Metab. (2010) 95:1386-94.

Methylation

  • Lister, R & Ecker. J.R. Finding the fifth base:genome-wide sequencing of cytosine methylation. Genome Res. 19, 959-966 (2009).
  • Ligthart S et al,. DNA Methylation signatures of chronic low grade inflammation are associated with complete diseases. (2016) Genome Biology 17:255
  • Brustolin S et al., Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res (2010) 43:1-7
  • Long H et al., The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J Autoimmun. (2016) S0896-8411(16)30098-1
  • Lim U & Song M, Dietary and Lifestyle Factors of DNA methylation. Cancer Epigenetics (2012) 863:359-376
  • Sawalha A et al., Defective T-cell ERK signalling induces interferon-regulated gene expression and over-expression of methylation-sensitive genes similar to lupus patients. Genes Immun, (2008) 9:368-78
  • Arakawa Y et al., Association of polymorphisms in DNMT1, DNMT3A, DNMT3B, MTHFR and MTRR genes with global DNA methylation levels and prognosis of autoimmune thyroid disease. Clin Exp Immunol. (2012) 70:194-201
  • Saad MN et al.,Genetic Case-Control Study for Eight Polymorphisms Associated with Rheumatoid Arthritis. PLoS One. (2015) 10:e0131960
  • MTHFR Methylenetetrahydrofolate Reductase: van der Put NM, Blom HJ. Neural tube defects and a disturbed folate dependent homocysteine metabolism. Eur J Obstet Gynecol Reprod Biol. 2000 Sep;92(1):57-61.
  • MTHFR Methylenetetrahydrofolate Reductase: van der Put NM, van Straaten HW, Trijbels FJ, Blom HJ. Folate, homocysteine and neural tube defects: an overview. Exp Biol Med (Maywood). 2001 Apr;226(4):243-70.
  • NOS3 Nitric Oxide Synthase 3: Seidlerová J, Filipovský J, Mayer O Jr, Kučerová A, Pešta M. (2015). Association between endothelial NO synthase polymorphisms and arterial properties in the general population. Official Journal of the Nitric Oxide Society, 44:47-51
  • VDR Vitamin D (1,25- dihydroxyvitamin D3) Receptor: Cui X1, Pelekanos M, Liu PY, Burne TH, McGrath JJ, Eyles DW. (2013). The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. J. Neuroscience (16), 236:77-87
  • VDR Vitamin D (1,25- dihydroxyvitamin D3) Receptor: Wang L, Ma J, Manson JE, Buring JE, Gaziano JM, Sesso HD. (2013). A prospective study of plasma vitamin D metabolites, vitamin D receptor gene polymorphisms, and risk of hypertension in men. Eur J Nutr, 52, (7):1771-9
  • COMT Catechol-O-Methyltransferase: Stein DJ, Newman TK, Savitz J, Ramesar R. (2006). Warriors versus worriers: the role of COMT gene variants. CNS Spectr;11(10): pp. 745-8
  • COMT Catechol-O-Methyltransferase: Xu K1, Ernst M, Goldman D. (2006). Imaging genomics applied to anxiety, stress response, and resiliency. Neuroinformatics; 4(1):51-64
  • CBS Cystathionine Beta-Synthase: Aras O, Hanson NQ, Yang F, Tsai MY. (2000). Influence of 699C–>T and 1080C–>T polymorphisms of the cystathionine beta-synthase gene on plasma homocysteine levels. Clinical Genetics. Dec;58(6):455-9
  • CBS Cystathionine Beta-Synthase: Hsu F.C., PhD, Sides E.D., MEd, Mychaleckyj J.C., DPhil, Worrall B.B, MD, MSc, Elias G.A., BS, Liu Y., MD, PhD, Chen W.M, PhD, Coull
  • CBS Cystathionine Beta-Synthase: B.M., MD, Toole J.F., MD, Rich S.S., PhD, Furie K.L., MD, MPH, and Sale M.M., PhD corresponding author (2011). Transcobalamin 2 variant associated with poststroke homocysteine modifies recurrent stroke risk. American Academy of Neurology. October 18; 77(16): 1543–1550
  • CBS Cystathionine Beta-Synthase: Liang S, Zhou Y, Wang H, Qian Y, Ma D, Tian W, Persaud-Sharma V, Yu C, Ren Y, Zhou S, Li X (2014). The Effect of Multiple Single Nucleotide Polymorphisms in the Folic Acid Pathway Genes on Homocysteine Metabolism. Biomed Research International
  • CBS Cystathionine Beta-Synthase: Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ, Tassone F, Hertz-Picciotto I (2011). Epidemiology. 22(4): 476-485

NAD(P)H: Quinone oxidoreductase 1 (NQO1)

  • Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews, 70(5), 257–65. http://doi.org/10.1111/j.1753-4887.2012.00476.x
  • Cataldi, A. (2010). Cell responses to oxidative stressors. Current Pharmaceutical Design, 16(12), 1387–95. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20166986
  • Bartsch, H., & Nair, J. (2006). Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbeck’s Archives of Surgery, 391(5), 499–510. http://doi.org/10.1007/s00423-006-0073-1
  • Azad, N., Iyer, A., Vallyathan, V., Wang, L., Castranova, V., Stehlik, C., & Rojanasakul, Y. (2010). Role of oxidative/nitrosative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation. Annals of the New York Academy of Sciences, 1203, 1–6. http://doi.org/10.1111/j.1749-6632.2010.05608.x
  • Su, Z.-Y., Shu, L., Khor, T. O., Lee, J. H., Fuentes, F., & Kong, A.-N. T. (2013). A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Topics in Current Chemistry, 329, 133–62. http://doi.org/10.1007/128_2012_340
  • Siegel, D., Gustafson, D. L., Dehn, D. L., Han, J. Y., Boonchoong, P., Berliner, L. J., & Ross, D. (2004). NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Molecular Pharmacology, 65(5), 1238–47. http://doi.org/10.1124/mol.65.5.1238
  • Moran, J. L., Siegel, D., & Ross, D. (1999). A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8150–5.
  • Ren, C., Park, S. K., Vokonas, P. S., Sparrow, D., Wilker, E., Baccarelli, A., … Schwartz, J. (2010). Air pollution and homocysteine: more evidence that oxidative stress-related genes modify effects of particulate air pollution. Epidemiology (Cambridge, Mass.), 21(2), 198–206. http://doi.org/10.1097/EDE.0b013e3181cc8bfc
  • Moran, J. L., Siegel, D., & Ross, D. (1999). A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8150–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10393963
  • Peng, Q., Lu, Y., Lao, X., Chen, Z., Li, R., Sui, J., … Li, S. (2014). The NQO1 Pro187Ser polymorphism and breast cancer susceptibility: evidence from an updated meta-analysis. Diagnostic Pathology, 9, 100. http://doi.org/10.1186/1746-1596-9-100
  • Zhu, H., & Li, Y. (2012). NAD(P)H: quinone oxidoreductase 1 and its potential protective role in cardiovascular diseases and related conditions. Cardiovascular Toxicology, 12(1), 39–45. http://doi.org/10.1007/s12012-011-9136-9
  • Kiyohara, C., Yoshimasu, K., Takayama, K., & Nakanishi, Y. (2005). NQO1, MPO, and the risk of lung cancer: a HuGE review. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 7(7), 463–78. http://doi.org/10.109701.gim.0000177530.55043.c1
  • Krajinovic, M., Labuda, D., & Sinnett, D. (n.d.). Childhood acute lymphoblastic leukemia: genetic determinants of susceptibility and disease outcome. Reviews on Environmental Health, 16(4), 263–79. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12041882
  • Hayes, J. D., Dinkova-Kostova, A. T., Hayes, J. D., McMahon, M., Moi, P., al., et, … al., et. (2014). The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends in Biochemical Sciences, 39(4), 199–218. http://doi.org/10.1016/j.tibs.2014.02.002
  • Yang, C.-M., Huang, S.-M., Liu, C.-L., & Hu, M.-L. (2012). Apo-8’-lycopenal induces expression of HO-1 and NQO-1 via the ERK/p38-Nrf2-ARE pathway in human HepG2 cells. Journal of Agricultural and Food Chemistry, 60(6), 1576–85. http://doi.org/10.1021/jf204451n
  • Khor, T. O., Huang, Y., Wu, T.-Y., Shu, L., Lee, J., & Kong, A.-N. T. (2011). Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochemical Pharmacology, 82(9), 1073–8. http://doi.org/10.1016/j.bcp.2011.07.065
  • Tripathi, D. N., & Jena, G. B. (2010). Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: role of Nrf2, p53, p38 and phase-II enzymes. Mutation Research, 696(1), 69–80. http://doi.org/10.1016/j.mrgentox.2009.12.014

Transcription factor 7-Like 2 (TCF7L2)

  • Shaffer S A et al., Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 gene polymorphisms, Diabetes, 2007, 12: 2443-50 – increase diabetes risk
  • Vaquero AR et al. Using gene-network landscape to dissect genotype effects of TCF7L2 genetic variant on diabetes and cardiovascular risk. Physiol. Genomics. (2012) 44:903–14
  • Grant S et al. Variant of Transcription factor 7-like 2 gene confers risk of type 2 diabetes. Nature. (2006) 38: 320-323

Tumour Necrosis Factor – alpha (TNFa)

  • Burdge GC, Calder PC. Plasma cytokine response during the postprandial period: a potential causal process in vascular disease? Br J Nutri. (2005) 93:3-9.
  • Wang HG, et al., TNF-αG-308A polymorphism is associated with insulin resistance: a meta-analysis. Genet Mol Res. (2015) Jan 14:563-73.
  • Sookoian SC, et al., Meta-analysis on the G-308A tumor necrosis factor alpha gene variant and phenotypes associated with the metabolic syndrome. Obes Res. (2005) 13:2122-31.
  • Phillips CM et al., Additive effect of polymorphisms in the IL-6, LTA, and TNF (alpha) genes and plasma fatty acid level modulate risk for metabolic syndrome and its components. J Clin Endocrinol Metab. (2010) 95:1386-94.
  • Luna GI, et al., Association between -308G/A TNFA Polymorphism and Susceptibility to Type 2 Diabetes Mellitus: A Systematic Review.J Diabetes Res. 2016;2016:6309484. Epub (2016) Oct 16. Review.
  • Pulido-Gómez K, et al., Association of G308A and G238A Polymorphisms of the TNF-α Gene with Risk of Coronary Heart Disease: Systematic Review and Meta-analysis. Arch Med Res. (2016) 47(7):557-572.
  • Di Renzo L, et al., Association between -308 G/A TNF-α polymorphism and appendicular skeletal muscle mass index as a marker of sarcopenia in normal weight obese syndrome. Dis Markers. (2013) 35(6):615-23.
  • Guha M et.al,. Molecular mechanisms of TNF alpha gene expression in monocutic cells via hyperglycemia-induced oxidant stress-dependent and-independent pathways. JBC (2000) 275:17728-17739
  • Aggarwal B et al,. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers Br J Pharmacol. (2012) 169:1672-1692
  • Liu L, et al., Protective effects of tea polyphenols on exhaustive exercise-induced fatigue, inflammation and tissue damage. Food Nutr Res.(2017) Jun 1;61(1):1333390.
  • Cao H, et al., Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats. J Inflamm (Lond). (2007) Jan 5;4:1.
  • de Arruda LLM, et al., A single administration of fish oil inhibits the acute inflammatory response in rats. Asian Pac J Trop Med. (2017) 10(8):765-772.

Nuclear Factor-kB (NF-kB)

  • Sen, R., & Baltimore, D. (1986). Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell, 47(6), 921–8.
  • Ghosh, S., & Dass, J. F. P. (2016). Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene, 584(1), 97–109. http://doi.org/10.1016/j.gene.2016.03.008
  • Bonizzi, G., & Karin, M. (2004). The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends in Immunology, 25(6), 280–288. http://doi.org/10.1016/j.it.2004.03.008
  • Karban, A. S. (2003). Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Human Molecular Genetics, 13(1), 35–45. http://doi.org/10.1093/hmg/ddh008
  • Soydas, T., Karaman, O., Arkan, H., Yenmis, G., Ilhan, M. M., Tombulturk, K., … Kanigur Sultuybek, G. (2016). The Correlation of Increased CRP Levels with NFKB1 and TLR2 Polymorphisms in the Case of Morbid Obesity. Scandinavian Journal of Immunology, 84(5), 278–283. http://doi.org/10.1111/sji.12471
  • Zhou, B., Rao, L., Peng, Y., Wang, Y., Li, Y., Gao, L., … Zhang, L. (2009). Functional polymorphism of the NFKB1 gene promoter is related to the risk of dilated cardiomyopathy. BMC Medical Genetics, 10(1), 47. http://doi.org/10.1186/1471-2350-10-47
  • Andersen, V., Christensen, J., Overvad, K., Tjønneland, A., & Vogel, U. (2010). Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC Cancer, 10(1), 484. http://doi.org/10.1186/1471-2407-10-484
  • Vasiliadis, I., Kolovou, G., Kolovou, V., Giannakopoulou, V., Boutsikou, M., Katsiki, N., … Cokkinos, D. V. (2014). Gene polymorphisms and thyroid function in patients with heart failure. Endocrine, 45(1), 46–54. http://doi.org/10.1007/s12020-013-9926-x
  • Bianco, B., Lerner, T. G., Trevisan, C. M., Cavalcanti, V., Christofolini, D. M., & Barbosa, C. P. (2012). The nuclear factor-kB functional promoter polymorphism is associated with endometriosis and infertility. Human Immunology, 73(11), 1190–1193. http://doi.org/10.1016/j.humimm.2012.08.008
  • Zhang, D., Li, L., Zhu, Y., Zhao, L., Wan, L., Lv, J., … Ma, M. (2013). The NFKB1 -94 ATTG insertion/deletion polymorphism (rs28362491) contributes to the susceptibility of congenital heart disease in a Chinese population. Gene, 516(2), 307–310. http://doi.org/10.1016/j.gene.2012.12.078
  • López-Mejías, R., García-Bermúdez, M., González-Juanatey, C., Castañeda, S., Miranda-Filloy, J. A., Gómez-Vaquero, C., … González-Gay, M. A. (2012). NFKB1-94ATTG ins/del polymorphism (rs28362491) is associated with cardiovascular disease in patients with rheumatoid arthritis. Atherosclerosis, 224(2), 426–429. http://doi.org/10.1016/j.atherosclerosis.2012.06.008
  • Wang, Z., Liu, Q.-L., Sun, W., Yang, C.-J., Tang, L., Zhang, X., & Zhong, X.-M. (2014). Genetic polymorphisms in inflammatory response genes and their associations with breast cancer risk. Croatian Medical Journal, 55(6), 638–46. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25559835
  • Yang, X., Li, P., Tao, J., Qin, C., Cao, Q., Gu, J., … Yin, C. (2014). Association between NFKB1 −94ins/del ATTG Promoter Polymorphism and Cancer Susceptibility: An Updated Meta-Analysis. International Journal of Genomics, 2014, 1–8. http://doi.org/10.1155/2014/612972
  • Zou, Y. F., Wang, F., Feng, X. L., Tao, J. H., Zhu, J. M., Pan, F. M., & Su, H. (2011). Association of NFKB1 -94ins/delATTG promoter polymorphism with susceptibility to autoimmune and inflammatory diseases: a meta-analysis. Tissue Antigens, 77(1), 9–17. http://doi.org/10.1111/j.1399-0039.2010.01559.x
  • Wang, D., Xie, T., Xu, J., Wang, H., Zeng, W., Rao, S., … Zhou, Z. (2016). Genetic association between NFKB1 −94 ins/del ATTG Promoter Polymorphism and cancer risk: a meta-analysis of 42 case-control studies. Scientific Reports, 6, 30220. http://doi.org/10.1038/srep30220

Melanocortin-4 Receptor (MC4R)

  • Xi, Bo et al. “Association between Common Polymorphism near the MC4RGene and Obesity Risk: A Systematic Review and Meta-Analysis.” Ed. Balraj Mittal. PLoS ONE 7.9 (2012): e45731.
  • Van der Klaauw AA et al., Divergent effects of central melanocortin signalling on fat and sucrose preference in humans. Nat Commun. 2016 Oct 4;7:13055.

Minichromosome maintenance complex component 6 (MCM6)

  • Enattah NS et al. Identification of a variant associated with adult-type hypolactasia. Nature Genetics. 2002;30:233-7.
  • Koek et al. The T-13910C polymorphism in the lactase phlorizin hydrolase gene is associated with differences in serum calcium levels and calcium intake. Journal of Bone and Mineral Research. 2010;25(9):1980-7.
  • Dzialanski et al. Lactase persistence versus lactose intolerance: Is there an intermediate phenotype? Clinical Biochemistry. 2015. doi: 10.1016/j.clinbiochem.2015.11.001.

Molecular and Personalised Nutrition Genomics

Molecular and Personalised Nutrition Genomics

  • Hesketh, J., Wybranska, I., Dommels, Y., King, M., Elliott, R., Pico, C., & Keijer, J. (2006). Nutrient–gene interactions in benefit–risk analysis. British Journal of Nutrition, 95(6), 1232-1236. doi:10.1079/BJN20061749
  • Moore, David S. (2015). The Developing Genome: An Introduction to Behavioral Epigenetics (1st ed.). Oxford University Press. ISBN 978-0199922345.
    “Epigenetics”. Icahn School of Medicine at Mount Sinai. Retrieved 26 May 2015.
  • Craig, D. W., & Stephan, D. A. (2005). Applications of whole-genome high-density SNP genotyping. Expert Review of Molecular Diagnostics, 5(2), 159–170
    http://doi.org/10.1586/14737159.5.2.15
  • Blewitt, M., & Whitelaw, E. (2013). The Use of Mouse Models to Study Epigenetics. Cold Spring Harbor Perspectives in Biology, 5(11), a017939.
    http://doi.org/10.1101/cshperspect.a017939
  • Denham, J. (2018). Exercise and epigenetic inheritance of disease risk. Acta Physiologica, 222(1), e12881. http://doi.org/10.1111/apha.12881
  • Mario F. Fraga et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A, 102(30):10604-9.
  • Precision Nutrition, Genetics: The Universe Within
    By Krista Scott-Dixon, PhD with John Berardi, Phd, Alaina Hardie, and Helen Kollias, PhD
  • Dana C Dolinoy (2008). The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev., 66(Suppl 1): S7–11. doi: 10.1111/j.1753-4887.2008.00056.x
  • Hauber, U; Bruce, A; Neuhäuser-Berthold, M (1997). “A comparison of dietary reference values for energy of different countries”. Z Ernahrungswiss. 36: 394–402.
  • Dietary Reference Values of Food Energy and Nutrients for the United Kingdom (Report on Health & Social Subjects)
  • Cooper GM. (2000). The Cell: A Molecular Approach. 2nd edition. The Biosynthesis of Cell Constituents. Sunderland (MA): Sinauer Associates. ISBN 0-87893-106-6.
  • Wong, D. (2006). The ABCs of Gene Cloning. 2nd edition. Structures of Nucleic Acids. ISBN 978-0-387-28679-2.
  • Z.A. Shabarova, A.A. Bogdanov (1994). Advanced Organic Chemistry of Nucleic Acids. Wiley VCH, p. 1–6.
  • R. Dahm, F. Miescher (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. „Human Genetics”. 122 (6), p. 565–581. DOI: 10.1007/s00439-007-0433-0. PMID: 17901982.
  • Fenech, Michael; El-Sohemy, Ahmed; Cahill, Leah; Ferguson, Lynnette R.; French, Tapaeru-Ariki C.; Tai, E. Shyong; Milner, John; Koh, Woon-Puay; Xie, Lin; Zucker, Michelle; Buckley, Michael; Cosgrove, Leah; Lockett, Trevor; Fung, Kim Y.C.; Head, Richard (2011). “Nutrigenetics and Nutrigenomics: Viewpoints on the Current Status and Applications in Nutrition Research and Practice”. Journal of Nutrigenetics and Nutrigenomics. 4 (2): 69–89. doi:10.1159/000327772. ISSN 1661-6758. PMC 3121546.
  • Neeha, V. S.; Kinth, P. (2013). “Nutrigenomics research: a review”. Journal of Food Science and Technology. 50 (3): 415–428. doi:10.1007/s13197-012-0775-z. PMC 3602567.
  • Bisen, Prakash A.; Debnath, Mousumi; Prasad, Godavarthi B.K.S. (2010). Molecular Dianostics: Promises and Possibilities. Springer Science & Business Media. p. 26.ISBN 9048132614.

References – Health conditions

Alzheimer disease

  • Reversal of cognitive decline; a novel therapeutic programme, 2014: https://www.ncbi.nlm.nih.gov/pubmed/25324467 ;
    http://www.aging-us.com/article/100690/text
  • Dementia and Alzheimer disease was the leading cause of death in 2015 https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredinenglandandwalesseriesdr/2015
  • Hu X et al (2016).Alzheimer’s disease and gut microbiota. Sci China Life Sci, 59, 10, 1006-1023
  • Vanltallie T B (2017). Alzheimer’s disease: Innate immunity gone awry? Metabolism, 69S:S41-S49

Type 2 Diabetes

  • Lifetime Direct Medical Costs of Treating Type 2 Diabetes and Diabetic Complications: http://www.ajpmonline.org/article/S0749-3797%2813%2900338-3/abstract

Autoimmunity

  • Dooley MA, Hogan SL. Environmental epidemiology and risk factors for autoimmune disease. Curr Opin Rheumatol. (2003) 15:99-103
  • Goddard, M. E. et al. Genetics of Complex Traits: Prediction of Phenotype, Identification of Causal Polymorphisms and Genetic Architecture. Proceedings of the Royal Society B: Biological Sciences (2016) 283.1835: 20160569.
  • Visscher, PM. et al., Five Years of GWAS Discovery. American Journal of Human Genetics (2012) 90: 7–24.
  • Long H et al., The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J Autoimmun. (2016) S0896-8411(16)30098-1
  • Lim U & Song M, Dietary and Lifestyle Factors of DNA methylation. Cancer Epigenetics (2012) 863:359-376
  • Sawalha A et al., Defective T-cell ERK signalling induces interferon-regulated gene expression and over-expression of methylation-sensitive genes similar to lupus patients. Genes Immun, (2008) 9:368-78
  • Arakawa Y et al., Association of polymorphisms in DNMT1, DNMT3A, DNMT3B, MTHFR and MTRR genes with global DNA methylation levels and prognosis of autoimmune thyroid disease. Clin Exp Immunol. (2012) 70:194-201
  • Saad MN et al.,Genetic Case-Control Study for Eight Polymorphisms Associated with Rheumatoid Arthritis. PLoS One. (2015) 10:e0131960
  • Coeliac disease/gluten sensitivity

  • Leffler D et al., Extraintestinal manifestations of coeliac disease. Nat. Rev. Gastroenterol.Hepatol. (2015) 12: 561-571
  • Schuppan D, Current concepts of celiac disease pathogenesis. Gastroenetol. (2000) 119:234-242
  • Withoff S, et al., Understanding celiac disease by genomics. Trends in Genetics. (2016) 32:295308
  • Monsuur et al., Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS ONE. (2008) 3:e2270
  • Ford R (2009). The gluten syndrome: a neurological disease. Medical Hypotheses, 73, 3,
  • Spectrum of gluten-related disorders: consensus on new nomenclature and classification: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292448/
  • Daulatzai M A (2015). Non-celiac gluten sensitivity triggers gut dysbiosis, neuro inflammation, gut-brain axis dysfunction, and vulnerability for dementia. CNS Neurol Disord Drug Targets, 14, 1, 110-31
  • Cicarelli G et al (2003) – Clinical and neurological abnormalities in adult celiac disease. Neurol Sci, 24, 311-7
  • Hadjivassiliou M et al 2002 – Gluten sensitivity from gut to brain. Lancet Neurol, 9(3), 318-30.
  • Björck S, Brundin C, Lörinc E, Lynch KF, Agardh D. 2010 Screening detects a high proportion of celiac disease in young HLA-genotyped children. J Pediatr Gastroenterol Nutr, 50, pp49-53.
  • Newnham, E.D., 2017. Coeliac disease in the 21st century: paradigm shifts in the modern age. Journal of Gastroenterology and Hepatology, 32, pp.82–85. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28244672 [Accessed May 2, 2017].
  • Singh, P. et al., 2015. Risk of Celiac Disease in the First- and Second-Degree Relatives of Patients With Celiac Disease: A Systematic Review and Meta-Analysis. The American Journal of Gastroenterology, 110(11), pp.1539–1548. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26416192 [Accessed May 2, 2017].
  • Sollid, L.M., 2002. Coeliac disease: dissecting a complex inflammatory disorder. Nature reviews. Immunology, 2(9), pp.647–55. Available at: http://www.nature.com/doifinder/10.1038/nri885 [Accessed May 2, 2017].
  • Withoff, S. et al., 2016. Understanding Celiac Disease by Genomics. Trends in Genetics, 32(5), pp.295–308. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26972670 [Accessed May 2, 2017].
  • Inflammatory conditions

    • Kuek A et al., (2007) Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution. Postgrad Med J. v83(978)
    • Bayarsaihan D. Epigenetic Mechanisms in Inflammation. J Dent Res. (2011) 90:9-17
    • Ligthart S et al,. DNA Methylation signatures of chronic low grade inflammation are associated with complete diseases. (2016) Genome Biology 17:255
    • Brustolin S et al., Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res (2010) 43:1-7

    Obesity

    • http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)60692-4/abstract
    • Woehning A et al., The A-allele of the common FTO gene variant rs9939609 complicates weight maintenance in severe obese patients, International Journal of Obesity, 2013, 37, 135-39
    • E Grimm et al., Genetics of eating behaviour. Established and emerging concepts, Nutrition Reviews, Jan 2011, 69: 52-60
    • Tao Huang et al., FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial, Am Journal of clinical nutrition, 2014, 99, 4
    • Loos, R et al., “The Bigger Picture of FTO – the First GWAS-Identified Obesity Gene.” Nature reviews. Endocrinology (2014) 10: 51–61.
    • Xi, Bo et al. “Association between Common Polymorphism near the MC4RGene and Obesity Risk: A Systematic Review and Meta-Analysis.” Ed. Balraj Mittal. PLoS ONE 7.9 (2012): e45731.
    • Van der Klaauw AA et al., Divergent effects of central melanocortin signalling on fat and sucrose preference in humans. Nat Commun. 2016 Oct 4;7:13055.
    • Zhao T et al., Ala54Thr polymorphism of fatty acid binding protein 2 gene and fasting blood lipids: a meta-analysis, Atherosclerosis, 2010, 2: 461-67
    • Weiss E et al., FABP2Ala54Thr genotype is associated with glucoregulatory function and lipid oxidation after a high fat meal in sedentary non-diabetic men and women, Am J of Clinical Nutrition, Jan 2007, 85: 102-108
    • Liu Y et al., Association of the FABP2 Ala54Thr polymorphism with type 2 diabetes, obesity, and metabolic syndrome: a population-based case-control study and a systematic meta-analysis. Genet Mol Res. (2015) 14:1155-68.
    • Marín C, et al., The Ala54Thr polymorphism of the fatty acid-binding protein 2 gene is associated with a change in insulin sensitivity after a change in the type of dietary fat. Am J Clin Nutr. (2005) 82:196-200.
    • Vaquero AR et al. Using gene-network landscape to dissect genotype effects of TCF7L2 genetic variant on diabetes and cardiovascular risk. Physiol. Genomics. (2012) 44:903–14
    • Shaffer S A et al. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 gene polymorphisms. Diabetes. (2007)12: 2443-50
    • Grant S et al. Variant of Transcription factor 7-like 2 gene confers risk of type 2 diabetes. Nature. (2006) 38: 320-323
    • Hara K et al., The Pro12Ala Polymorphism in PPAR2 may confer resistance to type 2 diabetes. Biochem Biophys. Res. Comm. (2000) 29:212-216
    • Stefan N. et al., Effect of experimental elevation of free fatty acids on insulin secretion and insulin sensitivity in healthy carriers of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ2 gene. Diabetes. (2001) 50:1143–1148
    • Wang, Kai et al. “A Genome-Wide Association Study on Obesity and Obesity-Related Traits.” Ed. Zhongming Zhao. PLoS ONE 6.4 (2011): e18939.

    References – Other

    Consumer attitudes towards genetic tests and personalised nutrition

    • https://www.nhs.uk/news/genetics-and-stem-cells/new-rules-for-home-dna-tests/
    • https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/attitudes-toward-genetic-testing-and-personalised-nutrition-in-a-representative-sample-of-european-consumers/399BC096AF04C15378A8B34D5EBDCD19/core-reader
    • http://www.ucd.ie/lipgene/downloads/pe4_lisbon_2006/Attitudes%20to%20personalised%20nutrition.pdf

    JAMA paper – Feb 2018 – Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association with Genotype Pattern or Insulin Secretion

    • Gardner, C. D., Trepanowski, J. F., Del Gobbo, L. C., Hauser, M. E., Rigdon, J., Ioannidis, J. P. A., … King, A. C. (2018). Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion. JAMA, 319(7), 667. http://doi.org/10.1001/jama.2018.0245
    • Huang, T., Zheng, Y., Hruby, A., Williamson, D. A., Bray, G. A., Shen, Y., … Qi, L. (2017). Dietary Protein Modifies the Effect of the MC4R Genotype on 2-Year Changes in Appetite and Food Craving: The POUNDS Lost Trial. The Journal of Nutrition, 147(3), jn242958. http://doi.org/10.3945/jn.116.242958
    • Shai, I., Schwarzfuchs, D., Henkin, Y., Shahar, D. R., Witkow, S., Greenberg, I., … Stampfer, M. J. (2008). Weight Loss with a Low-Carbohydrate, Mediterranean, or Low-Fat Diet. New England Journal of Medicine, 359(3), 229–241. http://doi.org/10.1056/NEJMoa0708681
    • Stanton, M. V, Robinson, J. L., Kirkpatrick, S. M., Farzinkhou, S., Avery, E. C., Rigdon, J., … Gardner, C. D. (2017). DIETFITS study (diet intervention examining the factors interacting with treatment success) – Study design and methods. Contemporary Clinical Trials, 53, 151–161. http://doi.org/10.1016/j.cct.2016.12.021

    References – Supplements

    Serene

    • Kimura K, Ozeki M, Juneja L, Ohira H (2007). “L-Theanine reduces psychological and physiological stress responses”. Biol Psychol 74 (1): 39–45. DOI:10.1016/j.biopsycho.2006.06.006.
    • Park SK. Jung IC. Lee WK. Lee YS. Park HK. Go HJ. Kim K. Lim NK. Hong JT. Ly SY. Rho SS. (2011). “A combination of green tea extract and l-theanine improves memory and attention in subjects with mild cognitive impairment: a double-blind placebo-controlled study”. Journal of Medicinal Food 14 (4): 334–343. DOI:10.1089/jmf.2009.1374.
    • Haskell CF, Kennedy DO, Milne AL, Wesnes KA, Scholey AB (2008). “The effects of l-theanine, caffeine and their combination on cognition and mood”. Biol Psychol 77 (2): 113–22. DOI:10.1016/j.biopsycho.2007.09.008.
    • American Journal of Clinical Nutrition: Green tea consumption is associated with lower psychological distress in a general population: the Ohsaki Cohort 2006 study