Dale E. Bredesen. Reversal of cognitive decline in Alzheimer’s disease. AGING, June 2106, Vol 8 No 6.
Nicolls MR. The clinical and biological relationship between type II diabetes mellitus and Alzheimer’s disease. Curr Alzheimer Res 2004;1:47–54.
Nicholson C. Neurodegenerative disease: high fat lightens the load. Neuroscience 2008;9:584–5
CYP7A1
Abdullah, M. M., Cyr, A., Lépine, M.-C., Eck, P. K., Couture, P., Lamarche, B., & Jones, P. J. (2016). Common Variants in Cholesterol Synthesis– and Transport–Related Genes Associate with Circulating Cholesterol Responses to Intakes of Conventional Dairy Products in Healthy Individuals. The Journal of Nutrition, 146(5), 1008–1016. http://doi.org/10.3945/jn.115.222208
De Castro-Orós, I., Pampín, S., Cofán, M., Mozas, P., Pintó, X., Salas-Salvadó, J., … Pocoví, M. (2011). Promoter variant −204A > C of the cholesterol 7α-hydroxylase gene: Association with response to plant sterols in humans and increased transcriptional activity in transfected HepG2 cells. Clinical Nutrition, 30(2), 239–246. http://doi.org/10.1016/j.clnu.2010.07.020
Jenkins, D. J. A., Kendall, C. W. C., Faulkner, D., Vidgen, E., Trautwein, E. A., Parker, T. L., … Connelly, P. W. (2002). A dietary portfolio approach to cholesterol reduction: combined effects of plant sterols, vegetable proteins, and viscous fibers in hypercholesterolemia. Metabolism: Clinical and Experimental, 51(12), 1596–604. http://doi.org/10.1053/meta.2002.35578
Juzyszyn, Z., Kurzawski, M., Lener, A., Modrzejewski, A., Pawlik, A., & Droździk, M. (2008). Cholesterol 7α-Hydrolase ( CYP7A1 ) c.−278A>C Promoter Polymorphism in Gallstone Disease Patients. Genetic Testing, 12(1), 97–100. http://doi.org/10.1089/gte.2007.0067
MacKay, D. S., Eck, P. K., Gebauer, S. K., Baer, D. J., & Jones, P. J. (2015). CYP7A1-rs3808607 and APOE isoform associate with LDL cholesterol lowering after plant sterol consumption in a randomized clinical trial. The American Journal of Clinical Nutrition, 102(4), 951–957. http://doi.org/10.3945/ajcn.115.109231
Rideout, T. C., Harding, S. V, & Mackay, D. S. (2012). Metabolic and genetic factors modulating subject specific LDL-C responses to plant sterol therapy. Canadian Journal of Physiology and Pharmacology, 90(5), 509–14. http://doi.org/10.1139/y2012-060
Russell, D. W. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annual Review of Biochemistry, 72(1), 137–74. http://doi.org/10.1146/annurev.biochem.72.121801.161712
She, Y., MacKay, D. S., House, J. D., & Jones, P. J. (2018). CYP7A1-rs3808607: a single nucleotide polymorphism associated with cholesterol response to functional foods. Current Opinion in Food Science, 20, 19–23. http://doi.org/10.1016/j.cofs.2018.02.013
FADS
Schaeffer, L. et al., (2006). Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Human Molecular Genetics, 15(11), 1745–56
Bokor, S., et al., (2010) Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. Journal of Lipid Research, 51(8), 2325–33.
Vessby B et al,. Desaturation and elongation of Fatty acids and insulin action. Ann N Y Acad Sci. (2002) 967:189-95.
Cormier, H., et al., (2014) Effects of FADS and ELOVL polymorphisms on indexes of desaturase and elongase activities: results from a pre-post fish oil supplementation. Genes & Nutrition, 9(6), 437
Tosi F, et al., (2014) Delta-5 and delta-6 desaturases: crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv Exp Med Biol. 824:61-81
Fat Mass and Obesity (FTO)
Woehning A et al., The A-allele of the common FTO gene variant rs9939609 complicates weight maintenance in severe obese patients, International Journal of Obesity, 2013, 37, 135-39
E Grimm et al., Genetics of eating behaviour. Established and emerging concepts, Nutrition Reviews, Jan 2011, 69: 52-60
Tao Huang et al., FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial, Am Journal of clinical nutrition, 2014, 99, 4
Loos, R et al., “The Bigger Picture of FTO – the First GWAS-Identified Obesity Gene.” Nature reviews. Endocrinology (2014) 10: 51–61.
Wang, Kai et al. “A Genome-Wide Association Study on Obesity and Obesity-Related Traits.” Ed. Zhongming Zhao. PLoS ONE 6.4 (2011): e18939.
Glutathione S-Transferase (GST)
Ankathil R. Tobacco, Genetic susceptibility and lung cancer, Human genomic center, Malaysia, La-press.com, 2010
Block, G. et al. “Serum Vitamin C And Other Biomarkers Differ By Genotype Of Phase 2 Enzyme Genes GSTM1 And GSTT1”. American Journal of Clinical Nutrition 94.3 (2011): 929-937.
Cahill, L. E, B. Fontaine-Bisson, and A. El-Sohemy. “Functional Genetic Variants Of Glutathione S-Transferase Protect Against Serum Ascorbic Acid Deficiency”. American Journal of Clinical Nutrition 90.5 (2009): 1411-1417.
Horska, Alexandra et al. “Vitamin C Levels In Blood Are Influenced By Polymorphisms In Glutathione S-Transferases”. European Journal of Nutrition 50.6 (2010): 437-446. Web.
International Agency for Research on Cancer. Cruciferous Vegetables, Isothiocyanates And Indoles. Lyon: IARC Press, 2004.
Ren, C., Park, S. K., Vokonas, P. S., Sparrow, D., Wilker, E., Baccarelli, A., … Schwartz, J. (2010). Air pollution and homocysteine: more evidence that oxidative stress-related genes modify effects of particulate air pollution. Epidemiology (Cambridge, Mass.), 21(2), 198–206.
Tripathi, D. N., & Jena, G. B. (2010). Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: role of Nrf2, p53, p38 and phase-II enzymes. Mutation Research, 696(1), 69–80.
Su, Z.-Y., Shu, L., Khor, T. O., Lee, J. H., Fuentes, F., & Kong, A.-N. T. (2013). A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Topics in Current Chemistry, 329, 133–62.
Yuan, Lin-Hong et al. “The Role Of Glutathione S-Transferase M1 And T1 Gene Polymorphisms And Fruit And Vegetable Consumption In Antioxidant Parameters In Healthy Subjects”. British Journal of Nutrition 107.06 (2011): 928-933.
Michnovicz et al. Changes in levels of urinary oestrogen metabolites after oral indole-3- carbinol treatment in humans. J Natl Cancer Inst. 1997; 89 (10): 718-23.
Human leukocyte antigens (HLAs)
Björck S, Brundin C, Lörinc E, Lynch KF, Agardh D. 2010 Screening detects a high proportion of celiac disease in young HLA-genotyped children. J Pediatr Gastroenterol Nutr, 50, pp49-53.
Monsuur et al., 2008 Effective detection of human leukocyte antigen risk allele in celiac disease using tag single nucleotide polymorphisms. PLoSone, 5 e2270
Newnham, E.D., 2017. Coeliac disease in the 21st century: paradigm shifts in the modern age. Journal of Gastroenterology and Hepatology, 32, pp.82–85. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28244672 [Accessed May 2, 2017].
Singh, P. et al., 2015. Risk of Celiac Disease in the First- and Second-Degree Relatives of Patients With Celiac Disease: A Systematic Review and Meta-Analysis. The American Journal of Gastroenterology, 110(11), pp.1539–1548. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26416192 [Accessed May 2, 2017].
Sollid, L.M., 2002. Coeliac disease: dissecting a complex inflammatory disorder. Nature reviews. Immunology, 2(9), pp.647–55. Available at: http://www.nature.com/doifinder/10.1038/nri885 [Accessed May 2, 2017].
Withoff, S. et al., 2016. Understanding Celiac Disease by Genomics. Trends in Genetics, 32(5), pp.295–308. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26972670 [Accessed May 2, 2017].
IL-6 Receptor (IL6R)
Scheller J et al., The pro-and-anti-inflammatory properties of the cytokine interleukin-6. Biochim et Biophys Acta – Mol Cell Res. (2011) 1813:5 878-888
Ferreira R et al., Functional IL6R 358Ala allele impairs classical IL-6 receptor signalling and influences risk of diverse inflammatory diseases. PLOS Genetics (2013) 9:e1003444
Ridker P. C-reactive protein, inflammation ans cardiovascular disease. Tex Heart Inst J (2005) 32:384-386
De Jong A et.al., Metabolic effects of plant sterols and stanols (Review) J Nut Biochem (2003) 14:362-369
Petersen A M et al., The anti-inflammatory effect of exercise, Journal of Applied Physiology, 2005 April, 98: 1154-62 – exercise may reduce inflammation
Phillips CM et al., Additive effect of polymorphisms in the IL-6, LTA, and TNF-(alpha) genes and plasma fatty acid level modulate risk for the metabolic syndrome and its components. J Clin Endocrinol Metab. (2010) 95:1386-94.
Methylation
Lister, R & Ecker. J.R. Finding the fifth base:genome-wide sequencing of cytosine methylation. Genome Res. 19, 959-966 (2009).
Ligthart S et al,. DNA Methylation signatures of chronic low grade inflammation are associated with complete diseases. (2016) Genome Biology 17:255
Brustolin S et al., Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res (2010) 43:1-7
Long H et al., The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J Autoimmun. (2016) S0896-8411(16)30098-1
Lim U & Song M, Dietary and Lifestyle Factors of DNA methylation. Cancer Epigenetics (2012) 863:359-376
Sawalha A et al., Defective T-cell ERK signalling induces interferon-regulated gene expression and over-expression of methylation-sensitive genes similar to lupus patients. Genes Immun, (2008) 9:368-78
Arakawa Y et al., Association of polymorphisms in DNMT1, DNMT3A, DNMT3B, MTHFR and MTRR genes with global DNA methylation levels and prognosis of autoimmune thyroid disease. Clin Exp Immunol. (2012) 70:194-201
Saad MN et al.,Genetic Case-Control Study for Eight Polymorphisms Associated with Rheumatoid Arthritis. PLoS One. (2015) 10:e0131960
MTHFR Methylenetetrahydrofolate Reductase: van der Put NM, Blom HJ. Neural tube defects and a disturbed folate dependent homocysteine metabolism. Eur J Obstet Gynecol Reprod Biol. 2000 Sep;92(1):57-61.
MTHFR Methylenetetrahydrofolate Reductase: van der Put NM, van Straaten HW, Trijbels FJ, Blom HJ. Folate, homocysteine and neural tube defects: an overview. Exp Biol Med (Maywood). 2001 Apr;226(4):243-70.
NOS3 Nitric Oxide Synthase 3: Seidlerová J, Filipovský J, Mayer O Jr, Kučerová A, Pešta M. (2015). Association between endothelial NO synthase polymorphisms and arterial properties in the general population. Official Journal of the Nitric Oxide Society, 44:47-51
VDR Vitamin D (1,25- dihydroxyvitamin D3) Receptor: Cui X1, Pelekanos M, Liu PY, Burne TH, McGrath JJ, Eyles DW. (2013). The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. J. Neuroscience (16), 236:77-87
VDR Vitamin D (1,25- dihydroxyvitamin D3) Receptor: Wang L, Ma J, Manson JE, Buring JE, Gaziano JM, Sesso HD. (2013). A prospective study of plasma vitamin D metabolites, vitamin D receptor gene polymorphisms, and risk of hypertension in men. Eur J Nutr, 52, (7):1771-9
COMT Catechol-O-Methyltransferase: Stein DJ, Newman TK, Savitz J, Ramesar R. (2006). Warriors versus worriers: the role of COMT gene variants. CNS Spectr;11(10): pp. 745-8
COMT Catechol-O-Methyltransferase: Xu K1, Ernst M, Goldman D. (2006). Imaging genomics applied to anxiety, stress response, and resiliency. Neuroinformatics; 4(1):51-64
CBS Cystathionine Beta-Synthase: Aras O, Hanson NQ, Yang F, Tsai MY. (2000). Influence of 699C–>T and 1080C–>T polymorphisms of the cystathionine beta-synthase gene on plasma homocysteine levels. Clinical Genetics. Dec;58(6):455-9
CBS Cystathionine Beta-Synthase: Hsu F.C., PhD, Sides E.D., MEd, Mychaleckyj J.C., DPhil, Worrall B.B, MD, MSc, Elias G.A., BS, Liu Y., MD, PhD, Chen W.M, PhD, Coull
CBS Cystathionine Beta-Synthase: B.M., MD, Toole J.F., MD, Rich S.S., PhD, Furie K.L., MD, MPH, and Sale M.M., PhD corresponding author (2011). Transcobalamin 2 variant associated with poststroke homocysteine modifies recurrent stroke risk. American Academy of Neurology. October 18; 77(16): 1543–1550
CBS Cystathionine Beta-Synthase: Liang S, Zhou Y, Wang H, Qian Y, Ma D, Tian W, Persaud-Sharma V, Yu C, Ren Y, Zhou S, Li X (2014). The Effect of Multiple Single Nucleotide Polymorphisms in the Folic Acid Pathway Genes on Homocysteine Metabolism. Biomed Research International
Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews, 70(5), 257–65. http://doi.org/10.1111/j.1753-4887.2012.00476.x
Cataldi, A. (2010). Cell responses to oxidative stressors. Current Pharmaceutical Design, 16(12), 1387–95. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20166986
Bartsch, H., & Nair, J. (2006). Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbeck’s Archives of Surgery, 391(5), 499–510. http://doi.org/10.1007/s00423-006-0073-1
Azad, N., Iyer, A., Vallyathan, V., Wang, L., Castranova, V., Stehlik, C., & Rojanasakul, Y. (2010). Role of oxidative/nitrosative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation. Annals of the New York Academy of Sciences, 1203, 1–6. http://doi.org/10.1111/j.1749-6632.2010.05608.x
Su, Z.-Y., Shu, L., Khor, T. O., Lee, J. H., Fuentes, F., & Kong, A.-N. T. (2013). A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Topics in Current Chemistry, 329, 133–62. http://doi.org/10.1007/128_2012_340
Siegel, D., Gustafson, D. L., Dehn, D. L., Han, J. Y., Boonchoong, P., Berliner, L. J., & Ross, D. (2004). NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Molecular Pharmacology, 65(5), 1238–47. http://doi.org/10.1124/mol.65.5.1238
Moran, J. L., Siegel, D., & Ross, D. (1999). A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8150–5.
Ren, C., Park, S. K., Vokonas, P. S., Sparrow, D., Wilker, E., Baccarelli, A., … Schwartz, J. (2010). Air pollution and homocysteine: more evidence that oxidative stress-related genes modify effects of particulate air pollution. Epidemiology (Cambridge, Mass.), 21(2), 198–206. http://doi.org/10.1097/EDE.0b013e3181cc8bfc
Moran, J. L., Siegel, D., & Ross, D. (1999). A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8150–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10393963
Peng, Q., Lu, Y., Lao, X., Chen, Z., Li, R., Sui, J., … Li, S. (2014). The NQO1 Pro187Ser polymorphism and breast cancer susceptibility: evidence from an updated meta-analysis. Diagnostic Pathology, 9, 100. http://doi.org/10.1186/1746-1596-9-100
Zhu, H., & Li, Y. (2012). NAD(P)H: quinone oxidoreductase 1 and its potential protective role in cardiovascular diseases and related conditions. Cardiovascular Toxicology, 12(1), 39–45. http://doi.org/10.1007/s12012-011-9136-9
Kiyohara, C., Yoshimasu, K., Takayama, K., & Nakanishi, Y. (2005). NQO1, MPO, and the risk of lung cancer: a HuGE review. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 7(7), 463–78. http://doi.org/10.109701.gim.0000177530.55043.c1
Krajinovic, M., Labuda, D., & Sinnett, D. (n.d.). Childhood acute lymphoblastic leukemia: genetic determinants of susceptibility and disease outcome. Reviews on Environmental Health, 16(4), 263–79. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12041882
Hayes, J. D., Dinkova-Kostova, A. T., Hayes, J. D., McMahon, M., Moi, P., al., et, … al., et. (2014). The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends in Biochemical Sciences, 39(4), 199–218. http://doi.org/10.1016/j.tibs.2014.02.002
Yang, C.-M., Huang, S.-M., Liu, C.-L., & Hu, M.-L. (2012). Apo-8’-lycopenal induces expression of HO-1 and NQO-1 via the ERK/p38-Nrf2-ARE pathway in human HepG2 cells. Journal of Agricultural and Food Chemistry, 60(6), 1576–85. http://doi.org/10.1021/jf204451n
Khor, T. O., Huang, Y., Wu, T.-Y., Shu, L., Lee, J., & Kong, A.-N. T. (2011). Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochemical Pharmacology, 82(9), 1073–8. http://doi.org/10.1016/j.bcp.2011.07.065
Tripathi, D. N., & Jena, G. B. (2010). Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: role of Nrf2, p53, p38 and phase-II enzymes. Mutation Research, 696(1), 69–80. http://doi.org/10.1016/j.mrgentox.2009.12.014
Transcription factor 7-Like 2 (TCF7L2)
Shaffer S A et al., Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 gene polymorphisms, Diabetes, 2007, 12: 2443-50 – increase diabetes risk
Vaquero AR et al. Using gene-network landscape to dissect genotype effects of TCF7L2 genetic variant on diabetes and cardiovascular risk. Physiol. Genomics. (2012) 44:903–14
Grant S et al. Variant of Transcription factor 7-like 2 gene confers risk of type 2 diabetes. Nature. (2006) 38: 320-323
Tumour Necrosis Factor – alpha (TNFa)
Burdge GC, Calder PC. Plasma cytokine response during the postprandial period: a potential causal process in vascular disease? Br J Nutri. (2005) 93:3-9.
Wang HG, et al., TNF-αG-308A polymorphism is associated with insulin resistance: a meta-analysis. Genet Mol Res. (2015) Jan 14:563-73.
Sookoian SC, et al., Meta-analysis on the G-308A tumor necrosis factor alpha gene variant and phenotypes associated with the metabolic syndrome. Obes Res. (2005) 13:2122-31.
Phillips CM et al., Additive effect of polymorphisms in the IL-6, LTA, and TNF (alpha) genes and plasma fatty acid level modulate risk for metabolic syndrome and its components. J Clin Endocrinol Metab. (2010) 95:1386-94.
Luna GI, et al., Association between -308G/A TNFA Polymorphism and Susceptibility to Type 2 Diabetes Mellitus: A Systematic Review.J Diabetes Res. 2016;2016:6309484. Epub (2016) Oct 16. Review.
Pulido-Gómez K, et al., Association of G308A and G238A Polymorphisms of the TNF-α Gene with Risk of Coronary Heart Disease: Systematic Review and Meta-analysis. Arch Med Res. (2016) 47(7):557-572.
Di Renzo L, et al., Association between -308 G/A TNF-α polymorphism and appendicular skeletal muscle mass index as a marker of sarcopenia in normal weight obese syndrome. Dis Markers. (2013) 35(6):615-23.
Guha M et.al,. Molecular mechanisms of TNF alpha gene expression in monocutic cells via hyperglycemia-induced oxidant stress-dependent and-independent pathways. JBC (2000) 275:17728-17739
Aggarwal B et al,. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers Br J Pharmacol. (2012) 169:1672-1692
Liu L, et al., Protective effects of tea polyphenols on exhaustive exercise-induced fatigue, inflammation and tissue damage. Food Nutr Res.(2017) Jun 1;61(1):1333390.
Cao H, et al., Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats. J Inflamm (Lond). (2007) Jan 5;4:1.
de Arruda LLM, et al., A single administration of fish oil inhibits the acute inflammatory response in rats. Asian Pac J Trop Med. (2017) 10(8):765-772.
Nuclear Factor-kB (NF-kB)
Sen, R., & Baltimore, D. (1986). Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell, 47(6), 921–8.
Ghosh, S., & Dass, J. F. P. (2016). Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene, 584(1), 97–109. http://doi.org/10.1016/j.gene.2016.03.008
Bonizzi, G., & Karin, M. (2004). The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends in Immunology, 25(6), 280–288. http://doi.org/10.1016/j.it.2004.03.008
Karban, A. S. (2003). Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Human Molecular Genetics, 13(1), 35–45. http://doi.org/10.1093/hmg/ddh008
Soydas, T., Karaman, O., Arkan, H., Yenmis, G., Ilhan, M. M., Tombulturk, K., … Kanigur Sultuybek, G. (2016). The Correlation of Increased CRP Levels with NFKB1 and TLR2 Polymorphisms in the Case of Morbid Obesity. Scandinavian Journal of Immunology, 84(5), 278–283. http://doi.org/10.1111/sji.12471
Zhou, B., Rao, L., Peng, Y., Wang, Y., Li, Y., Gao, L., … Zhang, L. (2009). Functional polymorphism of the NFKB1 gene promoter is related to the risk of dilated cardiomyopathy. BMC Medical Genetics, 10(1), 47. http://doi.org/10.1186/1471-2350-10-47
Andersen, V., Christensen, J., Overvad, K., Tjønneland, A., & Vogel, U. (2010). Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC Cancer, 10(1), 484. http://doi.org/10.1186/1471-2407-10-484
Vasiliadis, I., Kolovou, G., Kolovou, V., Giannakopoulou, V., Boutsikou, M., Katsiki, N., … Cokkinos, D. V. (2014). Gene polymorphisms and thyroid function in patients with heart failure. Endocrine, 45(1), 46–54. http://doi.org/10.1007/s12020-013-9926-x
Bianco, B., Lerner, T. G., Trevisan, C. M., Cavalcanti, V., Christofolini, D. M., & Barbosa, C. P. (2012). The nuclear factor-kB functional promoter polymorphism is associated with endometriosis and infertility. Human Immunology, 73(11), 1190–1193. http://doi.org/10.1016/j.humimm.2012.08.008
Zhang, D., Li, L., Zhu, Y., Zhao, L., Wan, L., Lv, J., … Ma, M. (2013). The NFKB1 -94 ATTG insertion/deletion polymorphism (rs28362491) contributes to the susceptibility of congenital heart disease in a Chinese population. Gene, 516(2), 307–310. http://doi.org/10.1016/j.gene.2012.12.078
López-Mejías, R., García-Bermúdez, M., González-Juanatey, C., Castañeda, S., Miranda-Filloy, J. A., Gómez-Vaquero, C., … González-Gay, M. A. (2012). NFKB1-94ATTG ins/del polymorphism (rs28362491) is associated with cardiovascular disease in patients with rheumatoid arthritis. Atherosclerosis, 224(2), 426–429. http://doi.org/10.1016/j.atherosclerosis.2012.06.008
Wang, Z., Liu, Q.-L., Sun, W., Yang, C.-J., Tang, L., Zhang, X., & Zhong, X.-M. (2014). Genetic polymorphisms in inflammatory response genes and their associations with breast cancer risk. Croatian Medical Journal, 55(6), 638–46. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25559835
Yang, X., Li, P., Tao, J., Qin, C., Cao, Q., Gu, J., … Yin, C. (2014). Association between NFKB1 −94ins/del ATTG Promoter Polymorphism and Cancer Susceptibility: An Updated Meta-Analysis. International Journal of Genomics, 2014, 1–8. http://doi.org/10.1155/2014/612972
Zou, Y. F., Wang, F., Feng, X. L., Tao, J. H., Zhu, J. M., Pan, F. M., & Su, H. (2011). Association of NFKB1 -94ins/delATTG promoter polymorphism with susceptibility to autoimmune and inflammatory diseases: a meta-analysis. Tissue Antigens, 77(1), 9–17. http://doi.org/10.1111/j.1399-0039.2010.01559.x
Wang, D., Xie, T., Xu, J., Wang, H., Zeng, W., Rao, S., … Zhou, Z. (2016). Genetic association between NFKB1 −94 ins/del ATTG Promoter Polymorphism and cancer risk: a meta-analysis of 42 case-control studies. Scientific Reports, 6, 30220. http://doi.org/10.1038/srep30220
Melanocortin-4 Receptor (MC4R)
Xi, Bo et al. “Association between Common Polymorphism near the MC4RGene and Obesity Risk: A Systematic Review and Meta-Analysis.” Ed. Balraj Mittal. PLoS ONE 7.9 (2012): e45731.
Van der Klaauw AA et al., Divergent effects of central melanocortin signalling on fat and sucrose preference in humans. Nat Commun. 2016 Oct 4;7:13055.
Enattah NS et al. Identification of a variant associated with adult-type hypolactasia. Nature Genetics. 2002;30:233-7.
Koek et al. The T-13910C polymorphism in the lactase phlorizin hydrolase gene is associated with differences in serum calcium levels and calcium intake. Journal of Bone and Mineral Research. 2010;25(9):1980-7.
Dzialanski et al. Lactase persistence versus lactose intolerance: Is there an intermediate phenotype? Clinical Biochemistry. 2015. doi: 10.1016/j.clinbiochem.2015.11.001.
Molecular and Personalised Nutrition Genomics
Molecular and Personalised Nutrition Genomics
Hesketh, J., Wybranska, I., Dommels, Y., King, M., Elliott, R., Pico, C., & Keijer, J. (2006). Nutrient–gene interactions in benefit–risk analysis. British Journal of Nutrition, 95(6), 1232-1236. doi:10.1079/BJN20061749
Moore, David S. (2015). The Developing Genome: An Introduction to Behavioral Epigenetics (1st ed.). Oxford University Press. ISBN 978-0199922345.
“Epigenetics”. Icahn School of Medicine at Mount Sinai. Retrieved 26 May 2015.
Craig, D. W., & Stephan, D. A. (2005). Applications of whole-genome high-density SNP genotyping. Expert Review of Molecular Diagnostics, 5(2), 159–170
http://doi.org/10.1586/14737159.5.2.15
Blewitt, M., & Whitelaw, E. (2013). The Use of Mouse Models to Study Epigenetics. Cold Spring Harbor Perspectives in Biology, 5(11), a017939.
http://doi.org/10.1101/cshperspect.a017939
Denham, J. (2018). Exercise and epigenetic inheritance of disease risk. Acta Physiologica, 222(1), e12881. http://doi.org/10.1111/apha.12881
Mario F. Fraga et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A, 102(30):10604-9.
Precision Nutrition, Genetics: The Universe Within
By Krista Scott-Dixon, PhD with John Berardi, Phd, Alaina Hardie, and Helen Kollias, PhD
Dana C Dolinoy (2008). The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev., 66(Suppl 1): S7–11. doi: 10.1111/j.1753-4887.2008.00056.x
Hauber, U; Bruce, A; Neuhäuser-Berthold, M (1997). “A comparison of dietary reference values for energy of different countries”. Z Ernahrungswiss. 36: 394–402.
Dietary Reference Values of Food Energy and Nutrients for the United Kingdom (Report on Health & Social Subjects)
Cooper GM. (2000). The Cell: A Molecular Approach. 2nd edition. The Biosynthesis of Cell Constituents. Sunderland (MA): Sinauer Associates. ISBN 0-87893-106-6.
Wong, D. (2006). The ABCs of Gene Cloning. 2nd edition. Structures of Nucleic Acids. ISBN 978-0-387-28679-2.
Z.A. Shabarova, A.A. Bogdanov (1994). Advanced Organic Chemistry of Nucleic Acids. Wiley VCH, p. 1–6.
R. Dahm, F. Miescher (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. „Human Genetics”. 122 (6), p. 565–581. DOI: 10.1007/s00439-007-0433-0. PMID: 17901982.
Fenech, Michael; El-Sohemy, Ahmed; Cahill, Leah; Ferguson, Lynnette R.; French, Tapaeru-Ariki C.; Tai, E. Shyong; Milner, John; Koh, Woon-Puay; Xie, Lin; Zucker, Michelle; Buckley, Michael; Cosgrove, Leah; Lockett, Trevor; Fung, Kim Y.C.; Head, Richard (2011). “Nutrigenetics and Nutrigenomics: Viewpoints on the Current Status and Applications in Nutrition Research and Practice”. Journal of Nutrigenetics and Nutrigenomics. 4 (2): 69–89. doi:10.1159/000327772. ISSN 1661-6758. PMC 3121546.
Neeha, V. S.; Kinth, P. (2013). “Nutrigenomics research: a review”. Journal of Food Science and Technology. 50 (3): 415–428. doi:10.1007/s13197-012-0775-z. PMC 3602567.
Bisen, Prakash A.; Debnath, Mousumi; Prasad, Godavarthi B.K.S. (2010). Molecular Dianostics: Promises and Possibilities. Springer Science & Business Media. p. 26.ISBN 9048132614.
References – Health conditions
Alzheimer disease
Reversal of cognitive decline; a novel therapeutic programme, 2014: https://www.ncbi.nlm.nih.gov/pubmed/25324467 ;
http://www.aging-us.com/article/100690/text
Dementia and Alzheimer disease was the leading cause of death in 2015 https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredinenglandandwalesseriesdr/2015
Hu X et al (2016).Alzheimer’s disease and gut microbiota. Sci China Life Sci, 59, 10, 1006-1023
Vanltallie T B (2017). Alzheimer’s disease: Innate immunity gone awry? Metabolism, 69S:S41-S49
Type 2 Diabetes
Lifetime Direct Medical Costs of Treating Type 2 Diabetes and Diabetic Complications: http://www.ajpmonline.org/article/S0749-3797%2813%2900338-3/abstract
Autoimmunity
Dooley MA, Hogan SL. Environmental epidemiology and risk factors for autoimmune disease. Curr Opin Rheumatol. (2003) 15:99-103
Goddard, M. E. et al. Genetics of Complex Traits: Prediction of Phenotype, Identification of Causal Polymorphisms and Genetic Architecture. Proceedings of the Royal Society B: Biological Sciences (2016) 283.1835: 20160569.
Visscher, PM. et al., Five Years of GWAS Discovery. American Journal of Human Genetics (2012) 90: 7–24.
Long H et al., The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J Autoimmun. (2016) S0896-8411(16)30098-1
Lim U & Song M, Dietary and Lifestyle Factors of DNA methylation. Cancer Epigenetics (2012) 863:359-376
Sawalha A et al., Defective T-cell ERK signalling induces interferon-regulated gene expression and over-expression of methylation-sensitive genes similar to lupus patients. Genes Immun, (2008) 9:368-78
Arakawa Y et al., Association of polymorphisms in DNMT1, DNMT3A, DNMT3B, MTHFR and MTRR genes with global DNA methylation levels and prognosis of autoimmune thyroid disease. Clin Exp Immunol. (2012) 70:194-201
Saad MN et al.,Genetic Case-Control Study for Eight Polymorphisms Associated with Rheumatoid Arthritis. PLoS One. (2015) 10:e0131960
Coeliac disease/gluten sensitivity
Leffler D et al., Extraintestinal manifestations of coeliac disease. Nat. Rev. Gastroenterol.Hepatol. (2015) 12: 561-571
Schuppan D, Current concepts of celiac disease pathogenesis. Gastroenetol. (2000) 119:234-242
Withoff S, et al., Understanding celiac disease by genomics. Trends in Genetics. (2016) 32:295308
Monsuur et al., Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS ONE. (2008) 3:e2270
Ford R (2009). The gluten syndrome: a neurological disease. Medical Hypotheses, 73, 3,
Spectrum of gluten-related disorders: consensus on new nomenclature and classification: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292448/
Daulatzai M A (2015). Non-celiac gluten sensitivity triggers gut dysbiosis, neuro inflammation, gut-brain axis dysfunction, and vulnerability for dementia. CNS Neurol Disord Drug Targets, 14, 1, 110-31
Cicarelli G et al (2003) – Clinical and neurological abnormalities in adult celiac disease. Neurol Sci, 24, 311-7
Hadjivassiliou M et al 2002 – Gluten sensitivity from gut to brain. Lancet Neurol, 9(3), 318-30.
Björck S, Brundin C, Lörinc E, Lynch KF, Agardh D. 2010 Screening detects a high proportion of celiac disease in young HLA-genotyped children. J Pediatr Gastroenterol Nutr, 50, pp49-53.
Newnham, E.D., 2017. Coeliac disease in the 21st century: paradigm shifts in the modern age. Journal of Gastroenterology and Hepatology, 32, pp.82–85. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28244672 [Accessed May 2, 2017].
Singh, P. et al., 2015. Risk of Celiac Disease in the First- and Second-Degree Relatives of Patients With Celiac Disease: A Systematic Review and Meta-Analysis. The American Journal of Gastroenterology, 110(11), pp.1539–1548. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26416192 [Accessed May 2, 2017].
Sollid, L.M., 2002. Coeliac disease: dissecting a complex inflammatory disorder. Nature reviews. Immunology, 2(9), pp.647–55. Available at: http://www.nature.com/doifinder/10.1038/nri885 [Accessed May 2, 2017].
Withoff, S. et al., 2016. Understanding Celiac Disease by Genomics. Trends in Genetics, 32(5), pp.295–308. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26972670 [Accessed May 2, 2017].
Inflammatory conditions
Kuek A et al., (2007) Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution. Postgrad Med J. v83(978)
Bayarsaihan D. Epigenetic Mechanisms in Inflammation. J Dent Res. (2011) 90:9-17
Ligthart S et al,. DNA Methylation signatures of chronic low grade inflammation are associated with complete diseases. (2016) Genome Biology 17:255
Brustolin S et al., Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res (2010) 43:1-7
Woehning A et al., The A-allele of the common FTO gene variant rs9939609 complicates weight maintenance in severe obese patients, International Journal of Obesity, 2013, 37, 135-39
E Grimm et al., Genetics of eating behaviour. Established and emerging concepts, Nutrition Reviews, Jan 2011, 69: 52-60
Tao Huang et al., FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial, Am Journal of clinical nutrition, 2014, 99, 4
Loos, R et al., “The Bigger Picture of FTO – the First GWAS-Identified Obesity Gene.” Nature reviews. Endocrinology (2014) 10: 51–61.
Xi, Bo et al. “Association between Common Polymorphism near the MC4RGene and Obesity Risk: A Systematic Review and Meta-Analysis.” Ed. Balraj Mittal. PLoS ONE 7.9 (2012): e45731.
Van der Klaauw AA et al., Divergent effects of central melanocortin signalling on fat and sucrose preference in humans. Nat Commun. 2016 Oct 4;7:13055.
Zhao T et al., Ala54Thr polymorphism of fatty acid binding protein 2 gene and fasting blood lipids: a meta-analysis, Atherosclerosis, 2010, 2: 461-67
Weiss E et al., FABP2Ala54Thr genotype is associated with glucoregulatory function and lipid oxidation after a high fat meal in sedentary non-diabetic men and women, Am J of Clinical Nutrition, Jan 2007, 85: 102-108
Liu Y et al., Association of the FABP2 Ala54Thr polymorphism with type 2 diabetes, obesity, and metabolic syndrome: a population-based case-control study and a systematic meta-analysis. Genet Mol Res. (2015) 14:1155-68.
Marín C, et al., The Ala54Thr polymorphism of the fatty acid-binding protein 2 gene is associated with a change in insulin sensitivity after a change in the type of dietary fat. Am J Clin Nutr. (2005) 82:196-200.
Vaquero AR et al. Using gene-network landscape to dissect genotype effects of TCF7L2 genetic variant on diabetes and cardiovascular risk. Physiol. Genomics. (2012) 44:903–14
Shaffer S A et al. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 gene polymorphisms. Diabetes. (2007)12: 2443-50
Grant S et al. Variant of Transcription factor 7-like 2 gene confers risk of type 2 diabetes. Nature. (2006) 38: 320-323
Hara K et al., The Pro12Ala Polymorphism in PPAR2 may confer resistance to type 2 diabetes. Biochem Biophys. Res. Comm. (2000) 29:212-216
Stefan N. et al., Effect of experimental elevation of free fatty acids on insulin secretion and insulin sensitivity in healthy carriers of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ2 gene. Diabetes. (2001) 50:1143–1148
Wang, Kai et al. “A Genome-Wide Association Study on Obesity and Obesity-Related Traits.” Ed. Zhongming Zhao. PLoS ONE 6.4 (2011): e18939.
References – Other
Consumer attitudes towards genetic tests and personalised nutrition
JAMA paper – Feb 2018 – Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association with Genotype Pattern or Insulin Secretion
Gardner, C. D., Trepanowski, J. F., Del Gobbo, L. C., Hauser, M. E., Rigdon, J., Ioannidis, J. P. A., … King, A. C. (2018). Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion. JAMA, 319(7), 667. http://doi.org/10.1001/jama.2018.0245
Huang, T., Zheng, Y., Hruby, A., Williamson, D. A., Bray, G. A., Shen, Y., … Qi, L. (2017). Dietary Protein Modifies the Effect of the MC4R Genotype on 2-Year Changes in Appetite and Food Craving: The POUNDS Lost Trial. The Journal of Nutrition, 147(3), jn242958. http://doi.org/10.3945/jn.116.242958
Shai, I., Schwarzfuchs, D., Henkin, Y., Shahar, D. R., Witkow, S., Greenberg, I., … Stampfer, M. J. (2008). Weight Loss with a Low-Carbohydrate, Mediterranean, or Low-Fat Diet. New England Journal of Medicine, 359(3), 229–241. http://doi.org/10.1056/NEJMoa0708681
Stanton, M. V, Robinson, J. L., Kirkpatrick, S. M., Farzinkhou, S., Avery, E. C., Rigdon, J., … Gardner, C. D. (2017). DIETFITS study (diet intervention examining the factors interacting with treatment success) – Study design and methods. Contemporary Clinical Trials, 53, 151–161. http://doi.org/10.1016/j.cct.2016.12.021
References – Supplements
Serene
Kimura K, Ozeki M, Juneja L, Ohira H (2007). “L-Theanine reduces psychological and physiological stress responses”. Biol Psychol 74 (1): 39–45. DOI:10.1016/j.biopsycho.2006.06.006.
Park SK. Jung IC. Lee WK. Lee YS. Park HK. Go HJ. Kim K. Lim NK. Hong JT. Ly SY. Rho SS. (2011). “A combination of green tea extract and l-theanine improves memory and attention in subjects with mild cognitive impairment: a double-blind placebo-controlled study”. Journal of Medicinal Food 14 (4): 334–343. DOI:10.1089/jmf.2009.1374.
Haskell CF, Kennedy DO, Milne AL, Wesnes KA, Scholey AB (2008). “The effects of l-theanine, caffeine and their combination on cognition and mood”. Biol Psychol 77 (2): 113–22. DOI:10.1016/j.biopsycho.2007.09.008.
American Journal of Clinical Nutrition: Green tea consumption is associated with lower psychological distress in a general population: the Ohsaki Cohort 2006 study